QFT II exercises - sheet 3

If you find a mistake in this exercise first check the website if the problem has been resolved already in a newer version. Otherwise, please email rutger.boels@desy.de.

Exercise 1

a For a ϕ^{4} theory compute the one-loop correction to the propagator in dimensional regularisation using renormalised perturbation theory (see e.g Peshkin \& Schroeder)
b Add appropriate counter terms and determine δ_{Z} and δ_{m}
c For a ϕ^{3} theory consider the one-loop correction to the propagator in dimensional regularisation. There are two Feynman graphs: What is wrong with one of them?
d Consider renormalised scalar fields for the ϕ^{3} theory, including shifts of the scalar fields. Show the result can be written as

$$
\mathcal{L}=\frac{Z_{\phi}}{2}\left(\partial_{\mu} \phi\right) \partial^{\mu}-\frac{1}{2} Z_{m} m^{2} \phi^{2}+\frac{1}{6} Z_{\lambda} \lambda \phi^{3}+Y \phi
$$

e Argue that to first order in perturbation theory (tree level) $Y=0$.
f Formulate a natural normalisation condition to fix Y (hint: the vev of a single scalar field should be zero) and use it to kill the one loop tadpole. Show this also takes care of the problem in c.

Exercise 2

The bare Lagrangian for the Yukawa theory is given by

$$
\mathcal{L}=\bar{\psi}\left(i \not \subset-m_{f_{0}}\right) \psi+\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m_{0}^{2} \phi^{2}-g_{0} \bar{\psi} \phi \psi
$$

a Classify the superficially divergent graphs in this theory. Show that there is one with 4ϕ fields.
b Add a term to the action with a coupling constant λ to absorb the latter divergence. Argue that in general one should always add all terms allowed by dimensional analysis and the renormalisability criterion.
c Express \mathcal{L} in term of renormalised couplings m_{f}, m, g, λ, renormalised fields ϕ_{r}, ψ_{r} and appropriate counter terms (there are six). Hint: first guess the result
d Write down a complete set of renormalisation conditions and indicate which counter terms they fix
e Compute explicitly the one-loop corrections of the scalar propagator and determine for an appropriate function Δ the scalar field renormalisation and mass renormalisation constants as

$$
\begin{gathered}
\delta_{Z_{\phi}}=\lim _{d \rightarrow 4} \frac{4 g^{2}(d-1)}{(4 \pi)^{d / 2}} \int_{0}^{1} d x \frac{x(1-x) \Gamma(2-d / 2)}{\left(\Delta\left(p^{2}=m^{2}\right)\right)^{2-\frac{d}{2}}} \\
\delta_{m}=\lim _{d \rightarrow 4} \frac{4 g^{2}(d-1)}{(4 \pi)^{d / 2}} \int_{0}^{1} d x \frac{\Gamma(1-d / 2)}{\left(\Delta\left(p^{2}=m^{2}\right)\right)^{1-\frac{d}{2}}}+m^{2} \delta_{Z_{\phi}}
\end{gathered}
$$

